Cours

08/12/15

Architecture et Construction

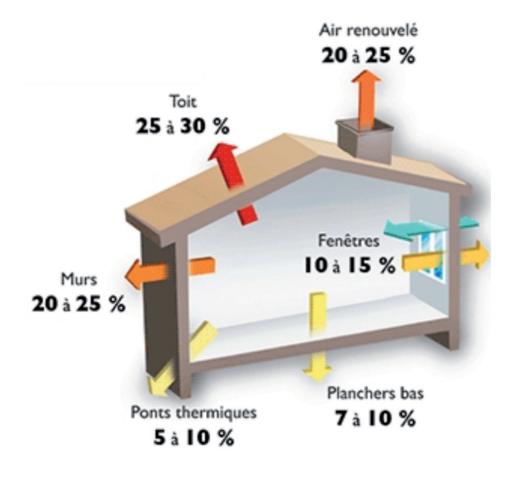
INTRODUCTION

LE CONFORT DANS LES LOCAUX HIVER / ÉTÉ

Le **chauffage** est un élément du confort d'hiver, il apporte les calories nécessaires pour maintenir la température à l'intérieur du local.

La climatisation apporte un confort en toute saison, en luttant contre la chaleur aussi bien que le froid.

La température extérieure varie de -10°C à 30°C suivant les saisons et les régions (climat tempéré à tropical).


Le corps humain a besoin d'une température ambiante qui se situe autour de 21°C. Pour éviter de trop solliciter le corps, on crée un climat artificiel à l'intérieur des locaux. Ce climat est obtenu en chauffant les locaux ou en les refroidissant.

L'énergie dépensée pour le chauffage ou le refroidissement doit être canalisée et stockée.

NECESSITE D'UNE ISOLATION THERMIQUE

<u>Remarque</u>: la quantité de matériaux isolants à mettre en oeuvre augmente le prix de l'ouvrage, il ne faut pas sur-isoler une habitation, afin d'amortir l'isolation sur une période de 5 à 15 ans.

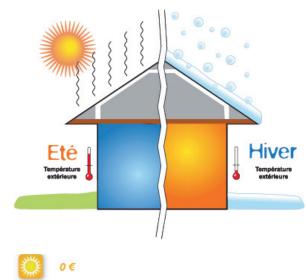
Confort Hygrothermique

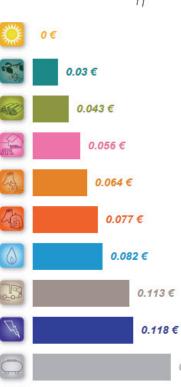
Cours

08/12/15

0.162 €

0.233 €


PARTIE I : LES ENJEUX

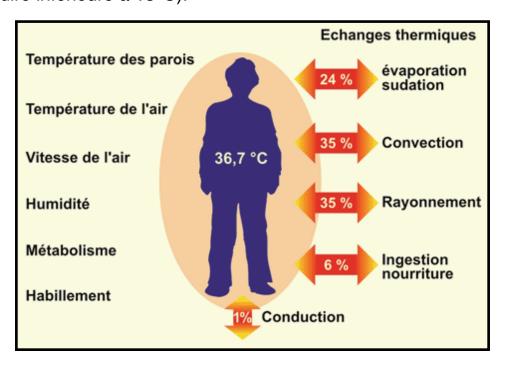

Ils s'expriment principalement à travers :

- le confort des occupants en toute saison, c'est-à-dire une ambiance adaptée aux usages prévues dans le bâtiment et permettant de satisfaire le confort d'hiver comme d'été,
- **l'hygiène et la santé** des occupants (par rapport aux besoins en oxygène, à l'élimination des odeurs, fumées et gaz nocifs divers),
- la pérennité du bâtiment et des équipements (problèmes de condensation, de mise hors gel, ...),
- l'économie liée aux consommations énergétiques (le poste «chauffage» représente en moyenne 44 % dans les bâtiments autres que d'habitation),
- la préservation de l'environnement, par rapport à l'utilisation de ressources non renouvelables et aux émissions de polluants dans l'atmosphère.

D'autres enjeux peuvent encore être considérés en fonction de l'usage des bâtiments.

Le confort pourra par exemple être relié à la notion de productivité dans le secteur tertiaire.

OGGIO		Co	u	rs
-------	--	----	---	----


08/12/15

Architecture et Construction

PARTIE II : LES PHÉNOMÈNES PHYSIOLOGIQUE

1 / BILAN THERMIQUE DU CORPS HUMAIN

Pour entretenir la vie, un corps humain transforme de l'énergie. Alors que la température du corps est maintenue constante à 37±0,8°C, celle de la peau est de l'ordre de 32 à 33°C (mais au niveau des pieds, elle peut descendre à 15 - 20° si la température ambiante est faible, c'est-à-dire inférieure à 15°C).

La régulation physique de la température du corps s'effectue suivant différents modes : principalement par convection, rayonnement, et évaporation, et dans une moindre mesure par conduction, respiration et sécrétion.

La perte de chaleur est de l'ordre de 120 W dans des conditions de température de 18-30°C, pour un individu au repos, en air calme, et peut aller jusqu'à 500 W dans des conditions d'activité physique soutenue.

Terminale STI2D	Confort Hygrothermique	Cours
Architecture et Construction		08/12/15

PARTIE II : LES PHÉNOMÈNES PHYSIOLOGIQUE

2 / NOTION DE CONFORT HYGROTHERMIQUE

La notion de confort est intimement liée à des adaptations ponctuelles de la régulation corporelle, à la fois globale et locale (des extrémités du corps).

La perception du froid et du chaud dépend de nombreux paramètres : le sexe, l'âge, la constitution, la santé, la nourriture, les vêtements, l'activité auxquels s'ajoutent encore des paramètres psychologiques, et même socio-culturels (abstraction faite de ceux liés à l'environnement).

Il est toutefois possible de caractériser des zones moyennes de confort (définies de manière statistique), sachant que les paramètres d'ambiance les plus déterminants sont :

- . la température de l'air (et les gradients verticaux et horizontaux de température),
- . la température des parois (et les asymétries de rayonnement des parois froides/ chaudes) ainsi que le rayonnement solaire transmis à travers les parois vitrées,
- l'humidité,
- . les mouvements de l'air ambiant (à travers les vitesses d'air).

Ces quatre données sont à considérer pour un individu moyen normalement habillé, avec un type d'activité donné (qu'il faut donc préalablement définir).

Terminale STI2D	Confort Hygrothermique	Cours
Architecture et Construction		08/12/15

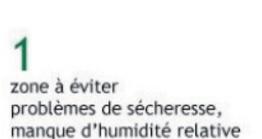
PARTIE II : LES PHÉNOMÈNES PHYSIOLOGIQUE

3 / LES EXIGENCES DU CONFORT HYGROTHERMIQUE

Les exigences de confort hygrothermique (pour des individus «au repos», ...) sont en situation courante caractérisées par les valeurs suivantes :

- · en confort d'hiver : T°air ~ 20° pour une humidité de 40 à 60 %
- · en confort d'été : T°air \sim 25° si Text < 30°, et T°air = (Text 5°) si Text > 30° (un système de rafraîchissement ou de climatisation sera nécessaire ou non suivant les régions, les activités et les apports internes).
- · l'écart entre la température de surface des parois et la température ambiante ne doit pas excéder :
 - 8° pour les parois vitrées
 - 5° pour les parois opaques (pour une base de T°extérieur de 0°C)
- · la température du sol doit pouvoir être maintenue supérieure à 17° (15° dans tous les cas)
- · dans le cas de parois chauffantes rayonnantes, leurs températures de surface ne doit pas excéder :
 - 27° pour les plafonds et les parois verticales
 - 24° pour les planchers
- · la variation de température avec la hauteur ne devrait pas excéder 1° par mètre dans la zone d'occupation, et 3° dans tous les cas (sauf conditions particulières à justifier)
- · la vitesse de l'air en tout point des zones d'occupation ne doit pas dépasser 0,3 à 0,5 m/s (selon sensibilité des occupants).

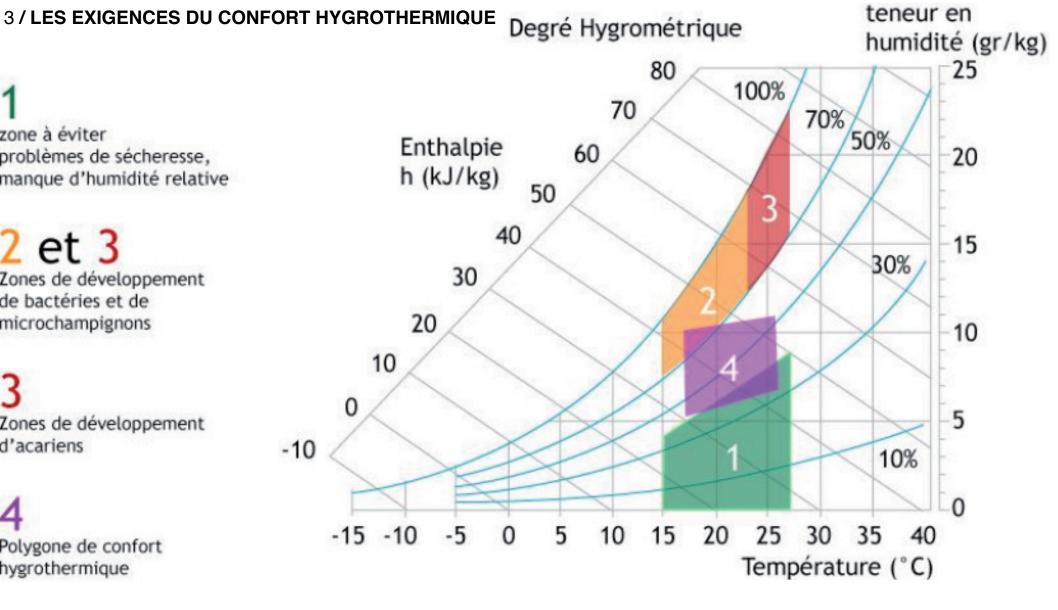
Remarques:


- en été, la T°air «confortable» dépend de l'humidité (pour une vitesse d'air donnée) ; si l'humidité est de 50 %, T°air < 28°C convient, mais si l'humidité est de 70 %, il faut obtenir T°air < 26°C
- la T° de confort peut varier de 17°C pour un gymnase à 22°C pour une infirmerie ou un vestiaire.

Confort Hygrothermique

Cours

08/12/15

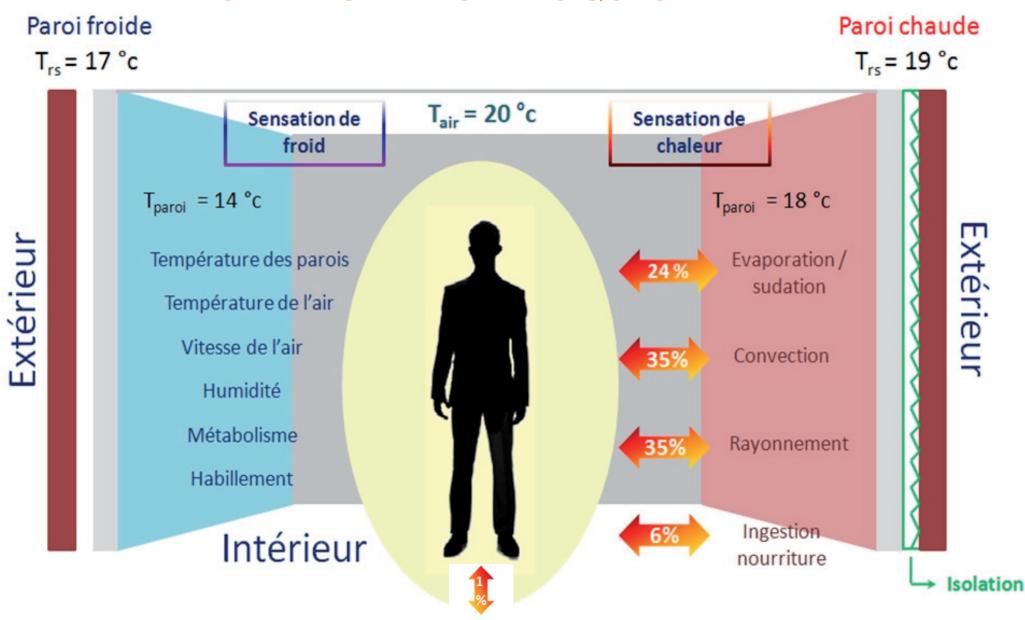

PARTIE II : LES PHÉNOMÈNES PHYSIOLOGIQUE

Zones de développement de bactéries et de microchampignons

Zones de développement d'acariens

Polygone de confort hygrothermique

Terminale STI2D


Architecture et Construction

Confort Hygrothermique

Cours

08/12/15

PARTIE III : LES PHÉNOMÈNES PHYSIQUES

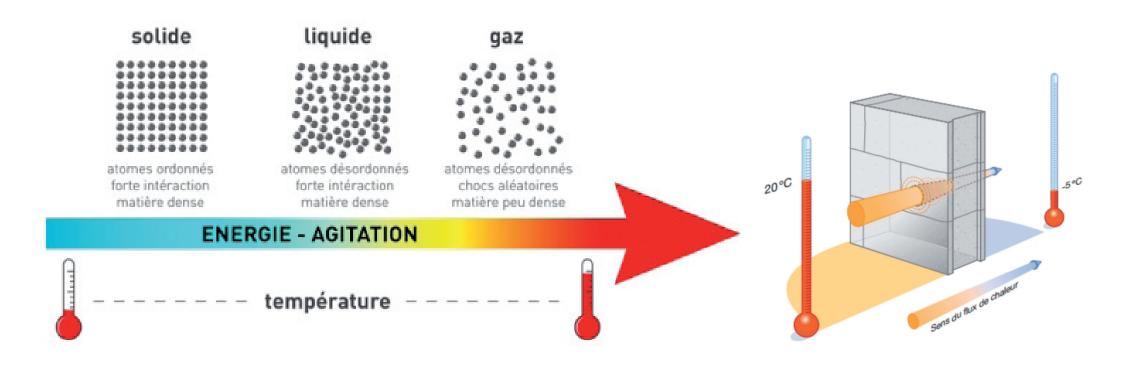
Conduction

Terminale STI2D	Confort Hyarothermiaus	C
Architecture et Construction	Confort Hygrothermique	08/

Cours 08/12/15

Architecture et Construction

PARTIE III : LES PHÉNOMÈNES PHYSIQUES


1 / NOTIONS DE TEMPERATURE ET DE CHALEUR

La température (°C ou K) représente l'état d'échauffement d'un corps :

$$T(^{\circ}C) = T(K) - 273,15$$

La chaleur est une énergie créée par l'agitation des particules d'un corps. L'agitation moléculaire augmente avec la température. Plus la température est élevée, plus les atomes ou molécules s'agitent autour de leur position.

La quantité de chaleur est l'énergie calorifique dégagée ou contenue par un corps.

_			
Term	inal	\sim $^{\circ}$	רוטוז
пенн	ша	\sim	11/11

Confort Hygrothermique

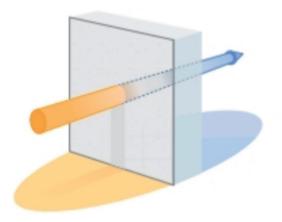
Cours

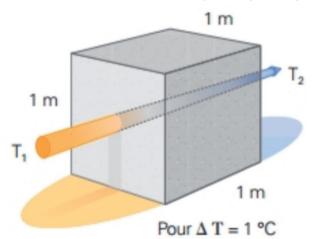
08/12/15

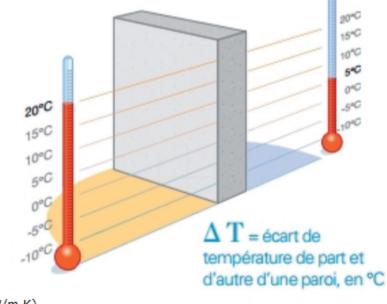
PARTIE III : LES PHÉNOMÈNES PHYSIQUES

2 / DENSITE DE FLUX DE CHALEUR

La densité de flux de chaleur ϕ est la quantité de chaleur passant à travers 1 m2 de paroi pendant 1 seconde.


Il s'exprime en W/m² et est compté positif du chaud vers le froid.


$$\phi = \lambda . \frac{\Delta T}{e}$$


 ΔT = écart de température entre les côtés de la paroi (°C) e = épaisseur de la paroi (mètres)


 ϕ = flux de chaleur (W/m2)

 λ = conductivité thermique en (W/m.K)

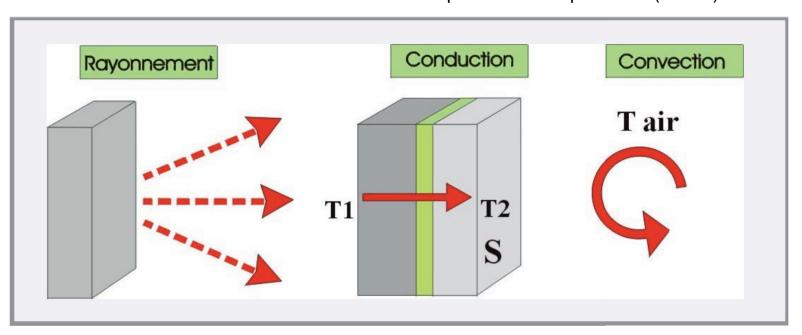
Terminale STI2D

_		
\mathbf{C}	ou	rc
	υu	10

08/12/15

Architecture et Construction

PARTIE III : LES PHÉNOMÈNES PHYSIQUES


Les échanges de chaleur entre le bâtiment et son environnement (comme pour le corps humain avec l'environnement) s'effectuent suivant trois modes :

3 / DEFINITIONS: RAYONNEMENT, CONDUCTION et CONVECTION

RAYONNEMENT: Transfert thermique d'un corps à un autre par ondes électromagnétiques, donc sans contact direct.

CONDUCTION: Propagation de la chaleur, de particule à particule à l'intérieur de la matière (d'un même corps solide ou un même fluide liquide ou gazeux).

CONVECTION: Transfert entre l'air et la matière solide résultant du déplacement des particules (de l'air) au niveau de l'interface.

Confort Hygrothermique

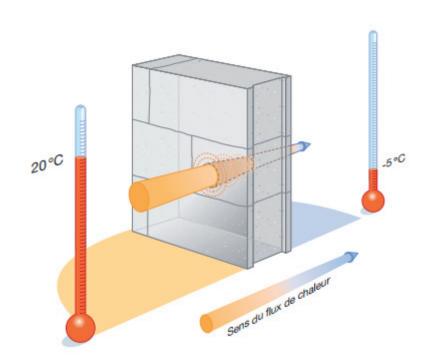
_		
Co		rc
$\mathcal{C}\mathcal{U}$	u	ıo

08/12/15

PARTIE III : LES PHÉNOMÈNES PHYSIQUES

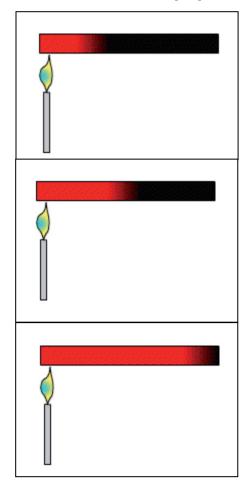
RAYONNEMENT : Le rayonnement ne chauffe pas la pièce. Il dépose de l'énergie dans les parois et ce sont ensuite ces parois qui vont émettre de la chaleur (vibrations).

Au niveau d'une paroi, un chaffage rayonne et dépose de l'énergie dans les parois qui elles vont émettre de la chaleur.

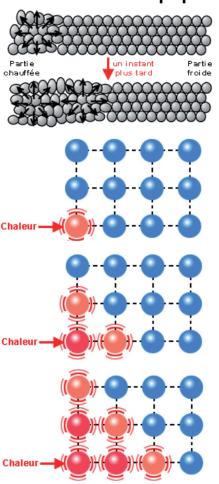

Confort Hygrothermique

_	
Cou	rc
COU	13

08/12/15


PARTIE III : LES PHÉNOMÈNES PHYSIQUES

CONDUCTION : Elle peut s'interpréter comme la transmission de proche en proche de l'agitation thermique : un atome (ou une molécule) cède une partie de son énergie cinétique à l'atome voisin.



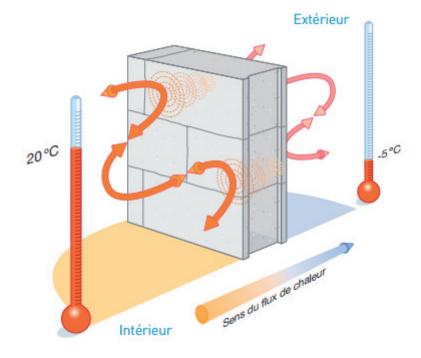
Flux de chaleur à travers une paroi d'un local chauffé vers l'extérieur.

Echelle macroscopique:

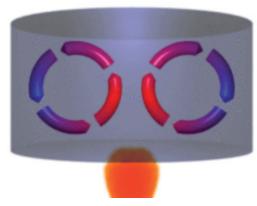
Echelle microscopique:

Terminale	STI2D
-----------	-------

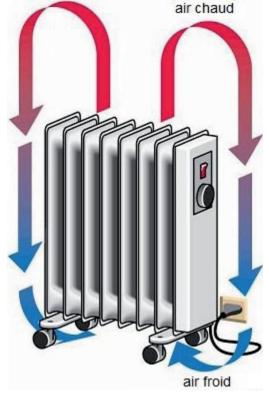
Confort Hygrothermique


Cours

08/12/15


PARTIE III : LES PHÉNOMÈNES PHYSIQUES

CONVECTION : Exemple 1 : durant la cuisson de pâtes, l'eau se met en mouvement spontanément. Les groupes de particules de fluide proches du fond de la casserole sont chauffés, se dilatent donc deviennent moins denses (masse volumique) et montent. Ceux de la surface de la casserole sont refroidis par le contact de la surface avec un milieu moins chaud, se contractent donc gagnent en densité et plongent.


Exemple 2 : échanges de chaleur par convection d'un convecteur électrique.

Echange thermique au niveau d'une paroi de température différente de celle de la pièce.

Exemple 1 : L'eau de la casserole

Exemple 2 : Convecteur electrique

Terminale STI2D	Confort Hyarothormiaus	Cours
Architecture et Construction	Confort Hygrothermique	08/12/15

PARTIE IV: NOTIONS APPLIQUEES AU BATIMENT

1 / PARAMETRES DU CONFORT HYGROTHERMIQUE

Les éléments à considérer pour agir sur les paramètres du confort hygrothermique sont principalement :

- . les conditions climatiques, à travers :
 - l'ensoleillement (diagramme solaire, durées moyennes d'ensoleillement, ...),
 - la température de l'air (et ses variations quotidiennes et mensuelles),
 - l'hygrométrie (et sa variation mensuelle),
 - l'orientation et la fréquence des vents dominants,
 - les degrés-jours (somme des écarts positifs entre une T° conventionnelle, égale à 18° en général, et la T° extérieure moyenne journalière). Ordre de grandeur des degrés-jours en
 - France (sur la base de 18°) : de 1600 °j (ex- trême sud-est) à 3200 °j (en région est) environ.
- . les dispositions constructives, à travers l'orientation, les masques, les matériaux, les isolants, la volumétrie.
- . les **équipements techniques** : systèmes de production et de distribution de chaleur et de froid, la régulation, le système de ventilation.
- . les apports internes, chaleur produite par les occupants et par les équipements divers.

La définition des exigences de confort hygrothermique et la recherche de dispositions techniques adaptées ne doivent pas perdre de vue la dimension de développement durable, en veillant à :

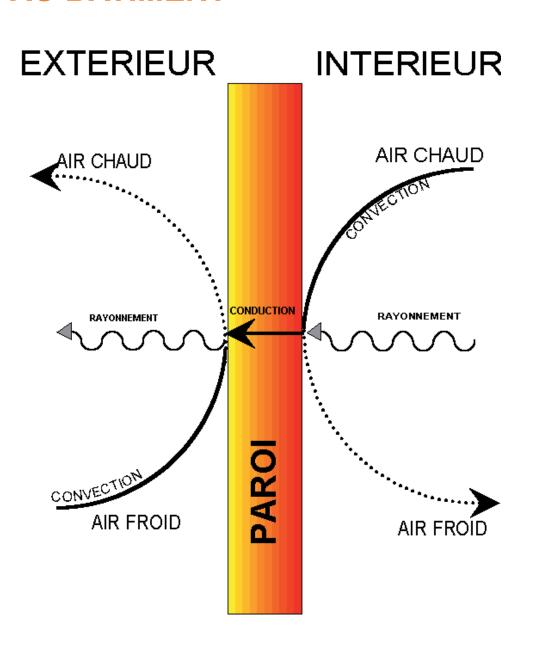
- réduire au maximum le recours à des systèmes actifs (c'est-à-dire nécessitant un apport d'énergie),
- choisir des équipements économes,
- optimiser les puissance installées,
- privilégier les ressources locales, dont les énergies renouvelables,
- considérer dans une analyse multicritère l'impact global écologique pour le choix des produits et systèmes.

Terminale STI2D

Confort Hygrothermique

Cours

08/12/15


PARTIE IV : NOTIONS APPLIQUEES AU BATIMENT

2 / RESISTANCE THERMIQUE D'UNE PAROI:

Dans le domaine du bâtiment, la résistance thermique sert en général à désigner la qualité isolante d'une paroi et sa faculté à s'opposer à la transmission de la chaleur qui la traverse.

Les échanges thermiques à l'intérieur d'une paroi s'effectuent :

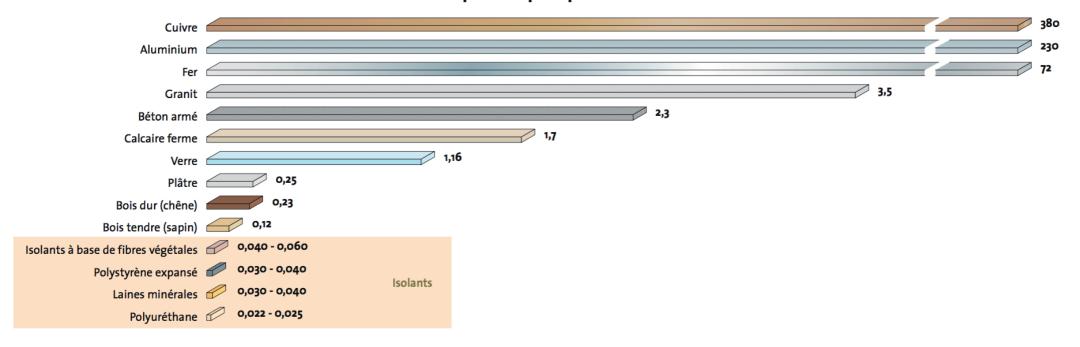
- dans la masse par conduction à travers la paroi,
- superficiellement par convection et rayonnement sur les faces de la paroi.

Terminale STI2D	

Cours	

08/12/15

Architecture et Construction


PARTIE IV : NOTIONS APPLIQUEES AU BATIMENT

3 / LA CONDUCTIVITE THERMIQUE DU MATERIAU (λ)

La conductivité thermique est la quantité d'énergie traversant 1m² de matériau d'un mètre d'épaisseur et, pour une différence de 1 degré de température entre les deux faces. La conductivité thermique n'est jamais égale à 0 car il y a toujours un transfert de chaleur. Elle s'exprime en W/(m.K). Elle représente l'aptitude du matériau à se laisser traverser par la chaleur. C'est une caractéristique constante intrinsèque aux matériaux homogènes.

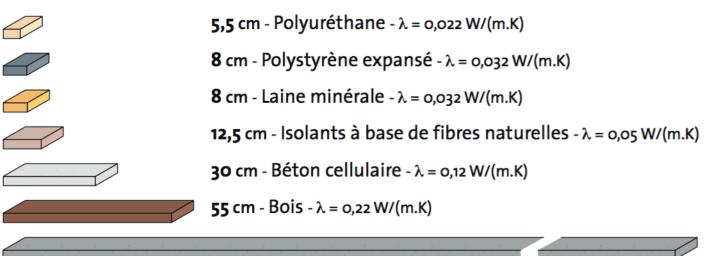
 λ (W/m.K) = Plus la conductivité est faible plus un matériau est isolant

Illustration de la différence de conductivité thermique de quelques matériaux usuels

Terminale STI2D	
Architecture et Construction	

Cours	
08/12/15	

PARTIE IV : NOTIONS APPLIQUEES AU BATIMENT


4 / LA RESISTANCE THERMIQUE DU MATERIAU (R)

La résistance thermique d'un matériau caractérise sa capacité à ralentir ou s'opposer au transfert de chaleur. Pour les matériaux homogènes, elle est égale au rapport de l'épaisseur du matériau en mètres par sa conductivité thermique. R s'exprime en m2.K/W avec e : épaisseur du matériau en mètre et λ : conductivité thermique du matériau en W/(m.K);

$$R = e / \lambda$$

Plus R est important, plus la paroi est isolante. On peut augmenter R en augmentant l'épaisseur du matériau.

Epaisseur équivalente pour obtenir avec différent matériaux une résistance thermique de R= 2,5 m².K/W

437 cm - Béton - λ = 1,75 W/(m.K)

450 cm - Granit - $\lambda = 3.5$ W/(m.K)

Terminale STI2D	

Confort Hygrothermique

Co		re
$\mathcal{C}\mathcal{U}$	u	ıo

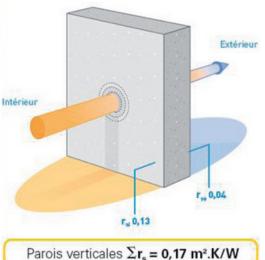
08/12/15

Intérieur

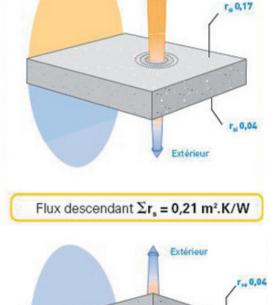
PARTIE IV : NOTIONS APPLIQUEES AU BATIMENT

5 / LA RESISTANCE SUPERFICIELLE D'UNE PAROI (R_{se} et R_{si})

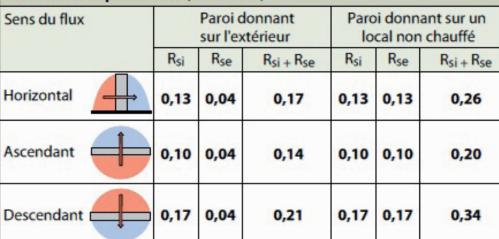
La résistance superficielle d'une paroi caractérise la part des échanges thermiques qui se réalise à la surface des parois par convection et rayonnement.


Elle dépend du sens du flux de chaleur et de l'orientation de la paroi.

Rsi pour les échanges sur la surface de paroi interne et Rse pour les échanges sur la surface de paroi externe.

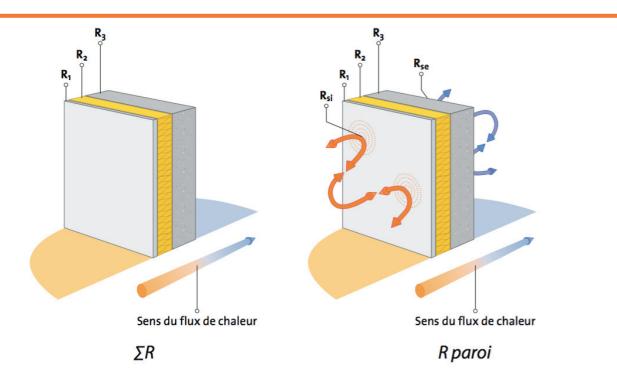

Elle s'exprime en m2.K/W.

Résistances superficielles (en m².K/W)


e	Intérieur	9
		1
		r _{si} 0,13

Flux ascendant $\Sigma r_s = 0.14 \text{ m}^2 \cdot \text{K/W}$

Terminale STI2D	Confort Hyarothormiaus	Cours
Architecture et Construction	Confort Hygrothermique	08/12/15


DARTIE IV -	NOTIONS	ADDI IOIIEES	AU BATIMENT
PADIIC IV .		APPLIQUEES	AU DAIIVIENI

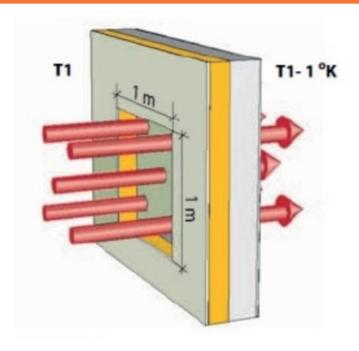
6 / LA RESISTANCE THERMIQUE D'UNE PAROI HETEROGENE (R_{totale})

La résistance thermique d'une paroi hétérogène R_{totale} est égale à la somme des résistances thermiques de chaque composant et des résistances superficielles. La R_{totale} s'exprime en m2.K/W

$$R_{\text{totale}} = R_{\text{si}} + \Sigma R + R_{\text{se}}$$

Plus la résistance thermique de la paroi est élevée plus la paroi est isolante

Terminale STI2D	Confort Hygrothermique	Cours
Architecture et Construction		08/12/15


DARTIE IV .	NOTIONS	ADDI IOLIFES	AU BATIMENT
PADIICIV.		APPLIQUEES	AU DAIIVIEN

7 / LE COEFFICIENT DE TRANSMISSION SURFACIQUE (U)

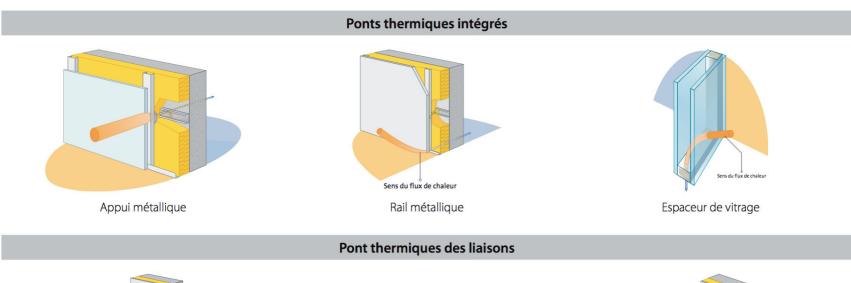
Le coefficient de transmission surfacique est la quantité de chaleur qui traverse 1 m² de paroi pour une différence de 1°C entre deux ambiances séparées par cette paroi. Il caractérise l'aptitude du matériau à se laisser traverser par la chaleur. C'est cette valeur utilisée internationalement que nous utiliserons. Il est noté :

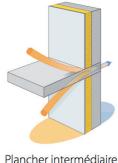
$$U = 1 / R_T$$

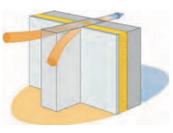
Plus la valeur de U est basse, plus la construction sera isolée

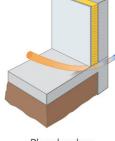
Confort Hygrothermique

\sim	_	
	ou	rs


08/12/15


PARTIE IV : NOTIONS APPLIQUEES AU BATIMENT


8 / PONTS THERMIQUES INTEGRES ET PONTS THERMIQUES DES LIAISONS


Les ponts thermiques intégrés rassemblent les ponts thermiques crées dans la paroi par des éléments tels que les ossatures métalliques, appuis et autres accessoires. Ils s'expriment en W/ (m.K).

Ils ne doivent pas être confondus avec les ponts thermiques des liaisons qui caractérisent eux les interfaces de parois.

Mur de refend

Plancher bas

Confort Hygrothermique

Cours

08/12/15

PARTIE V : LES REGLEMENTATIONS

1 / DOM: RTAADOM

THERMIQUE

ACOUSTIQUE

ERATION

Ventilation naturelle de confort

- Ouvertures spécifiques sur au moins deux façades d'orientations différentes et dans chaque pièce principale
- Taux d'ouverture minimal des façades
- Exigences sur les ventilateurs de plafond

Protection solaire

- Facteurs solaires
 maximaux pour les parois
 opaques et les baies
- Interdiction des fenêtres en toiture

Énergie solaire

 Utilisation de panneaux solaires pour l'eau chaude sanitaire

Protection contre les bruits intérieurs

- Isolation acoustique des murs séparatifs et des planchers
- Distance minimale entre les baies des logements
- Niveaux sonores maximaux pour les équipements

Protection contre les bruits extérieurs

 Exigences sur l'isolement acoustique des bâtiments

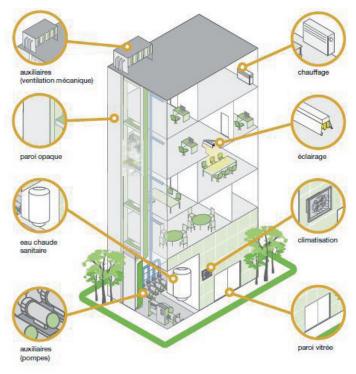
Ventilation naturelle

- Surface minimale d'ouverture des baies dans les pièces de service
- Présence d'entrées d'air en façade

Prise en compte de l'isolement acoustique

Débits minimaux d'air extérieur entrant

					\sim			_	
\sim	rm	ın	2	\sim	SI	1 14	OI.	1	
_		11 1	$\boldsymbol{\alpha}$.)	1 1/	<i>-</i> 1	,	


Confort Hygrothermique

Cours

08/12/15

PARTIE V : LES REGLEMENTATIONS

2 / France Métropolitaine : RT2012 - un engagement fort du Grenelle de l'environnement

L'indice « Bbio » permet de caractériser l'impact de la conception bioclimatique sur la performance énergétique du bâti. Une exigence d'efficacité énergétique minimale du bâti est introduite : le « Bbio » du bâtiment considéré doit être inférieur à une valeur maximale « Bbio_{max} ».

Bbio ≤ Bbio_{max}

L'indice « Tic »
propre au bâtiment,
caractérise sa
température
intérieure
conventionnelle.
L'exigence relative
au confort d'été est
maintenue : le
« Tic » du bâtiment
considéré doit être
inférieur à une
valeur de référence
« Tic, »

Tic ≤ Tic,...

L'indice « Cep », propre au bâtiment, caractérise sa consommation d'énergie primaire. La RT 2012 pose une exigence de consommation conventionnelle maximale d'énergie primaire du bâti : l'indice « Cep » du bâtiment considéré doit être inférieur à une valeur maximale « Cep...».

Cep ≤ Cep_{max}